Junsu Kang, PhD

Assistant Professor
Cell and Regenerative Biology
4451 WIMR
1111 Highland Ave
Madison, WI 53705
Focus Groups: 
Cancer Biology
Signal Transduction
PhD, Seoul National University, South Korea
Research Summary: 
The capacity for complex tissue regeneration is unevenly distributed across species. Unlike human, zebrafish possess a remarkable potential to regenerate tissues such as amputated appendages and damaged heart muscles. Interest of my laboratory is to understand how and what genetic and epigenetic factors control tissue regeneration using adult zebrafish as a model system.
Research Detail: 

a) Unraveling the Regulatory Mechanisms of cardiac Tissue Regeneration Enhancer Elements (TREEs).

The field of regenerative medicine has been primarily focused on identifying essential genes required for tissue regeneration. Yet, virtually nothing is known about the regulatory mechanisms controlling the expression of these genes. Previously, we identified the first Tissue Regeneration Enhancer Element (TREE), which can activate tissue regeneration programs. We reported a short DNA sequence, which is located upstream of leptin b (lepb), as a lepb-linked regeneration enhancer (LEN). This LEN does not show activity during development, but is robustly activated upon fin or cardiac injury. LEN activity is strongly maintained during fin or heart regeneration, but is completely decommissioned when regeneration is completed. My laboratory addresses how regeneration-specific TREE activity is controlled during tissue regeneration using LEN as a TREE representative. These studies will illuminate our understanding of gene regulatory networks underlying tissue regeneration and pave the way for future applications of improving tissue repair in mammals.

b) Identifying New Regulatory Factors Required for Tissue Regeneration.

Zebrafish is amenable to forward genetic screening, a powerful approach to discover novel factors affecting the phenotype. To identify novel regeneration factors, previously PI performed the forward genetic screening during postdoctoral training and isolated many mutant families which exhibit fin regeneration defects in a temperature-dependent manner. We continue to study these mutant families, and the goal of this project is to identify novel genes and their cellular and molecular mechanisms in fin regeneration and further to determine their roles in heart. This work will reveal novel molecular mechanisms that are important for regeneration of adult tissues and will lead to new ideas and paradigm-shifting discoveries.

Our experiments will provide a fundamental insight into tissue regeneration, and they have an additional potential to inform approaches for comprehending and enhancing the limited regenerative capacity displayed by humans.


Selected Publications: 
Kang, J., Hu, J., Karra, R., Dickson, A.L, Tornini, V.A., Nachtrab, G., Gemberling, M., Goldman, J.A., Black, B.L., Poss, K.D. Modulation of tissue repair by regeneration enhancer elements. Nature. 523(7598):201-206, (2016)
Kang, J., Karra, R., and Poss, K.D. Back in Black. Developmental Cell. 33(6):623-624, (2015)
Kang, J., Nachtrab, G., Poss, K.D., Local Dkk1 Crosstalk from Breeding Ornaments Impedes Regeneration of Injured Male Zebrafish Fins. Developmental Cell. 27(1):19-31, (2013) (This paper is chosen by cover story.)
Kang, J.*, Bai, Z.*, Zegarek, M.H., Grant, B.D., Lee, J. Essential roles of snap-29 in C. elegans. Developmental Biology. 355(1):77-88, (2011). (* These two equally contributed to this work)
Min, K.*, Kang, J.*, Lee, J. A modified feeding RNAi method for simultaneous knock-down of more than one gene in Caenorhabditis elegans. Biotechniques. 48(3): 229-232, (2010). (* These two equally contributed to this work)
Kang, J., Shin, D., Yu, JR., Lee, J. Lats kinase is involved in the intestinal apical membrane integrity in the nematode Caenorhabditis elegans. Development. 136(16): 2705-2715 (2009).